Search results for " Concentration Polarization"

showing 8 items of 8 documents

CFD prediction of concentration polarization phenomena in spacer-filled channels for Reverse Electrodialysis

2014

Abstract Salinity Gradient Power generation through Reverse Electrodialysis (SGP-RE) is a promising technology to convert the chemical potential difference of a salinity gradient into electric energy. In SGP-RE systems, as in most membrane processes, concentration polarization phenomena may affect the theoretical driving force and thus the performance of the process. Operating conditions, including the feed solution flow rate and concentration and the channels׳ geometrical configuration, may greatly influence both the polarization effect and the pumping energy consumption. The present work uses CFD to investigate the dependence of concentration polarization and pressure drop on flow rate, f…

Pressure dropSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciChemistryAnalytical chemistryFiltration and Separation02 engineering and technologyElectrodialysis021001 nanoscience & nanotechnology7. Clean energyBiochemistry6. Clean waterVolumetric flow rate020401 chemical engineeringChemical physicsReversed electrodialysisOsmotic powerGeneral Materials Science0204 chemical engineeringPhysical and Theoretical Chemistry0210 nano-technologyPolarization (electrochemistry)Current densitySettore ING-IND/19 - Impianti NucleariConcentration polarizationCFD Reverse Electrodialysis concentration polarization spacer-filled channel mixing promoter
researchProduct

CFD analysis of mass transfer in spacer-filled channels for reverse electrodialysis

2014

Reverse electrodialysis (RE) is a promising technology for electric power generation by converting the chemical potential difference of a salinity gradient, within a stack equipped by selective ion-exchange membranes. Concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry is a fundamental operating parameter for the optimization of the system. In this work, Computational Fluid Dynamic simulations were performed to predict fluid flow and mass transfer in spacer-filled channels for RE applications. A parametric analysis for different spacer geometries was carried out; in particular, woven and non woven spacers were si…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciCFD Reverse Electrodialysis concentration polarization spacer-filled channelSettore ING-IND/19 - Impianti Nucleari
researchProduct

Experiments and modelling for determining the Limiting Current Density in Electrodialysis units

2018

In the present work, in order to explore such issues on the LCD identification, we performed in-situ measurements with ED units, assessing the influence of operating conditions and validating a purposely implemented process simulator, which was then used for further investigation

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciElectrodialysis Limiting Current Density modelling CFD concentration polarizationSettore ING-IND/19 - Impianti Nucleari
researchProduct

Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications

2018

Abstract The need for unconventional sources of fresh water is pushing a fast development of desalination technologies, which proved to be able to face and solve the problem of water scarcity in many dry areas of the planet. Membrane desalination technologies are nowadays leading the market and, among these, electrodialysis (ED) plays an important role, especially for brackish water desalination, thanks to its robustness, extreme flexibility and broad range of applications. In fact, many ED-related processes have been presented, based on the use of Ion Exchange Membranes (IEMs), which are significantly boosting the development of ED-related technologies. This paper presents the fundamentals…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProcess modelingComputer scienceProcess (engineering)General Chemical Engineering02 engineering and technologyElectrodialysi7. Clean energyDesalinationWater scarcityWater desalination020401 chemical engineeringGeneral Materials Science0204 chemical engineeringRobustness (economics)Concentration polarizationSettore ING-IND/19 - Impianti NucleariIon exchange membraneWater Science and TechnologyElectrodialysis; Water desalination; Ion exchange membrane; Concentration polarization; EnergyFlexibility (engineering)EnergyMechanical EngineeringGeneral ChemistryElectrodialysis021001 nanoscience & nanotechnology6. Clean waterWater resources13. Climate actionBiochemical engineering0210 nano-technology
researchProduct

CFD modelling of profiled-membrane channels for reverse electrodialysis

2014

Abstract: Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations we…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProfiled MembraneSettore ING-IND/25 - Impianti ChimiciAnalytical chemistryConcentration PolarizationOcean Engineering02 engineering and technologyComputational fluid dynamics7. Clean energyComputational fluid dynamic020401 chemical engineeringReversed electrodialysisMass transferReverse electrodialysiFluid dynamics0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyConcentration polarizationReverse Electrodialysis; Profiled Membrane; Concentration Polarization; Computational Fluid Dynamics; Salinity GradientPressure dropbusiness.industryChemistrySalinity gradientMechanicsElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterMembraneSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessDesalination and Water Treatment
researchProduct

Maximum Net Power Density Conditions in Reverse Electrodialysis Stacks

2018

Reverse Electrodialysis (RED) harvests electrical energy from a salinity gradient. The maximum obtainable net power density (NPD) depends on many physical and geometric variables. Some have a monotonic (beneficial or detrimental) influence on NPD, and can be regarded as “scenario” variables chosen by criteria other than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, have contrasting effects, so that the NPD maximum is obtained for some intermediate values of these parameters. A 1-D model of a RED stack was coupled here with an optimization algorithm to determine the conditions of maximum NPD in the space o…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciReverse Electrodialysis Net power density Salinity Gradient Concentration Polarization Optimization Gradient AscentSettore ING-IND/19 - Impianti Nucleari
researchProduct

CFD simulation of Electrodialysis channels equipped with profiled membranes

Electrodialysis (ED) is a membrane-based electrochemical process that remove ions from a solution. The main use of ED is for the production of drinking water by brackish water desalination, but there are several other applications. ED is characterized by the coexistence and the interaction of different physical phenomena that affect the stack performance. Among them, fluid dynamics and mass transport are crucial: concentration polarization affects the limiting current density and the non-Ohmic voltage drop due to the chemical potential difference between the two solutions; pressure drop affects the pumping power consumption. Moreover, the total energy consumption depends also on the Ohmic v…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/19 - Impianti NucleariElectrodialysis Profiled membrane CFD Concentration polarization Pressure drop
researchProduct

Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study

2016

Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Filtration and Separation02 engineering and technologyCFD; Concentration polarization; Mass transfer; Reverse electrodialysis (RED); Spacer-filled channel; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBiochemistryProtein filamentsymbols.namesake020401 chemical engineeringReversed electrodialysisMass transferFluid dynamicsGeneral Materials ScienceMass transfer0204 chemical engineeringPhysical and Theoretical ChemistryConcentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationPressure dropSettore ING-IND/24 - Principi Di Ingegneria ChimicaChromatographyChemistryReverse electrodialysis (RED)Reynolds numberMechanics021001 nanoscience & nanotechnologysymbolsMaterials Science (all)0210 nano-technologyCFD
researchProduct